An Eecient and Accurate Parallel Algorithm for the Singular Value Problem of Bidiagonal Matrices ?
نویسندگان
چکیده
In this paper we propose an algorithm based on Laguerre's iteration, rank two divide-and-conquer technique and a hybrid strategy for computing singular values of bidiagonal matrices. The algorithm is fully parallel in nature and evaluates singular values to tiny relative error if necessary. It is competitive with QR algorithm in serial mode in speed and advantageous in computing partial singular values. Error analysis and numerical results are presented.
منابع مشابه
Ela Accurate Computations with Totally Positive Bernstein–vandermonde Matrices
The accurate solution of some of the main problems in numerical linear algebra (linear system solving, eigenvalue computation, singular value computation and the least squares problem) for a totally positive Bernstein–Vandermonde matrix is considered. Bernstein–Vandermonde matrices are a generalization of Vandermonde matrices arising when considering for the space of the algebraic polynomials o...
متن کاملAccurate computations with totally positive Bernstein-Vandermonde matrices
The accurate solution of some of the main problems in numerical linear algebra (linear system solving, eigenvalue computation, singular value computation and the least squares problem) for a totally positive Bernstein–Vandermonde matrix is considered. Bernstein–Vandermonde matrices are a generalization of Vandermonde matrices arising when considering for the space of the algebraic polynomials o...
متن کاملAn E cient and Accurate Parallel Algorithm for theSingular Value Problem
In this paper we propose an algorithm based on Laguerre's iteration, rank two divide-and-conquer technique and a hybrid strategy for computing singular values of bidiagonal matrices. The algorithm is fully parallel in nature and evaluates singular values to tiny relative error if necessary. It is competitive with QR algorithm in serial mode in speed and advantageous in computing partial singula...
متن کاملMore Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition
Bidiagonal reduction is the preliminary stage for the fastest stable algorithms for computing the singular value decomposition. However, the best error bounds on bidiagonal reduction methods are of the form A + A = UBV T ; kAk 2 " M f(n)kAk 2 where B is bidiagonal, U and V are orthogonal, " M is machine precision, and f(n) is a modestly growing function of the dimensions of A. A Givens-based bi...
متن کاملA Differential Equation Approach to the Singular Value Decomposition of Bidiagonal Matrices
We consider the problem of approximating the singular value decomposition of a bidiagonal matrix by a one-parameter family of differentiable matrix flows. It is shown that this approach can be fully expressed as an autonomous, homogeneous, and cubic dynamical system. Asymptotic behavior is justified by the established theory of the Toda lattice.
متن کامل